-->

WE ARE CME

CENTER OF MECHANICAL ENGINEERING

Khoa học & Công nghệ

Tổng Quan Về Mạng Nơ-ron Nhân Tạo

I.Giới Thiệu

 Mạng neural nhân tạo (Artificial Neural Networks : ANN)  ra đời xuất phát từ ý tưởng mô phỏng hoạt động của bộ não con người.

Mạng noron nhân tạo là sự tái tạo bằng kỹ thuật những chức năng của hệ thần kinh con người với vô số các neural được liên kết truyền thông với nhau qua mạng.Giống như con người , ANN được học bởi kinh nghiệm, lưu những kinh nghiệm đó và sử dụng trong những tình huống phù hợp.

Mạng neural trong một vài năm trở lại đây đã được nhiều người quan tâm và đã áp dụng thành công trong nhiều lĩnh vực khác nhau, như tài chính, y tế, địa chất và vật lý. Thật vậy, bất cứ ở đâu có vấn đề về dự báo, phân loại và điều khiển, mạng neural đều có thể ứng dụng được. Ví dụ như khả năng nhận dạng mặt người trong các hệ thống quản lý thông tin liên quan đến con người (quản lý nhân sự ở các công sở, doanh nghiệp; quản lý học sinh, sinh viên trong các trường trung học, đại học và cao đẳng;… ); các ngành khoa học hình sự, tội phạm; khoa học tướng số, tử vi,…

Kết hợp chặt chẽ với logic mờ, mạng neural nhân tạo đã tạo nên cuộc cách mạng thực sự trong việc thông minh hóa và vạn năng hóa các bộ điều khiển kỹ thuật cao cho cả hiện nay và trong tương lai. Ví dụ như ứng dụng tự động điều khiển hệ thống lái tàu, hệ thống dự báo sự cố,…

Mạng neural  dựa trên việc mô phỏng cấp thấp hệ thống neural sinh học. Trong tương lai với sự phát triển mô phỏng neural sinh học, chúng ta có thể có loại máy tính thông minh thật sự.

II.Khái Niệm Mạng Neural

1.Sơ lược về neural sinh học

Sau đây là những thành phần chính trong cấu trúc của một nơron trong bộ não con người

Hình 1: Mô hình neuron sinh học

 

Trong đó :

vCác Soma là thân của noron.

vCác dendrites là các dây mảnh, dài, gắn liền với soma, chúng truyền dữ liệu (dưới dạng xung điện thế) đến cho soma xử lý. Bên trong soma các dữ liệu đó được tổng hợp lại. Có thể xem gần đúng sự tổng hợp ấy như là một phép lấy tổng tất cả các dữ liệu mà nơron nhận được.

vMột loại dây dẫn tín hiệu khác cũng gắn với soma là các axon. Khác với dendrites, axons có khả năng phát các xung điện thế, chúng là các dây dẫn tín hiệu từ nơron đi các nơi khác. Chỉ khi nào điện thế trong soma vượt quá một giá trị ngưỡng nào đó (threshold) thì axon mới phát một xung điện thế, còn nếu không thì nó ở trạng thái nghỉ.

vAxon nối với các dendrites của các nơron khác thông qua những mối nối đặc biệt gọi là synapse. Khi điện thế của synapse tăng lên do các xung phát ra từ axon thì synapse sẽ nhả ra một số chất hoá học (neurotransmitters); các chất này mở "cửa" trên dendrites để cho các ions truyền qua. Chính dòng ions này làm thay đổi điện thế trên dendrites, tạo ra các xung dữ liệu lan truyền tới các nơron khác.

  • Có thể tóm tắt hoạt động của một nơron như sau: nơron lấy tổng tất cả các điện thế vào mà nó nhận được, và phát ra một xung điện thế nếu tổng ấy lớn hơn một ngưỡng nào đó. Các nơron nối với nhau ở các synapses. Synapse được gọi là mạnh khi nó cho phép truyền dẫn dễ dàng tín hiệu qua các nơron khác. Ngược lại, một synapse yếu sẽ truyền dẫn tín hiệu rất khó khăn.

Các synapses đóng vai trò rất quan trọng trong sự học tập. Khi chúng ta học tập thì hoạt động của các synapses được tăng cường, tạo nên nhiều liên kết mạnh giữa các nơron.

Có thể nói rằng người nào học càng giỏi thì càng có nhiều synapses và các synapses ấy càng mạnh mẽ, hay nói cách khác, thì liên kết giữa các nơron càng nhiều, càng nhạy bén.

2.Mạng Neural Nhân Tạo

-Noron nhân tạo là một đơn vị tính toán có nhiều đầu vào và một đầu ra.

Hình 2: Mô hình neuron nhân tạo ở mức đơn giản

 

Nơron này sẽ hoạt động như sau: giả sử có N inputs, nơron sẽ có N weights (trọng số) tương ứng với N đường truyền inputs. Nơron sẽ lấy tổng cótrọng số của tất cả các inputs. Nói như thế có nghĩa là nơron sẽ lấy input thứ nhất, nhân với weight trên đường input thứ nhất, lấy input thứ hai nhân với weight của đường input thứ hai v.v..., rồi lấy tổng của tất cả các kết quả thu được. Đường truyền nào có weight càng lớn thì tín hiệu truyền qua đó càng lớn, như vậy có thể xem weight là đại lượng tương đương với synapse trong nơron sinh học. Có thể viết kết quả lấy tổng của nơron như sau:

           Kết quả này sẽ được so sánh với threshold t của nơron, nếu nó lớn hơn t thì nơron cho output là 1, còn nếu nhỏ hơn thì output là 0. Ngoài ra ta cũng có thể trừ tổng nói trên cho t, rồi so sánh kết quả thu được với 0, nếu kết quả là dương thì nơron cho ouput bằng 1, nếu kết quả âm thì output là 0. Dưới dạng toán học ta có thể viết output của nơron như sau:

Trong đó f là hàm Heaviside:

f được gọi là threshold function hay transfer function của nơron, còn giá trị (-t) còn được gọi là bias hay offset của nơron.

Nếu chúng ta đưa thêm một input nữa vào, input thứ 0, có giá trị luôn luôn bằng 1 và weight luôn luôn bằng bias (-t) thì output của nơron còn có thể viết dưới dạng:

Lưu ý là chỉ số của tổng bây giờ bắt đầu từ 0 chứ không phải bằng 1 như trước nữa.

BÀI VIẾT LIÊN QUAN:

Một công ty chế tạo phụ tùng thông minh biến mọi chiếc xe đạp thường thành xe đạp điện trong vòng vài giây, nhỏ gọn bỏ vừa balo

Chỉ với một phụ tùng nhỏ gọn, một chiếc xe đạp thường có thể biến thành một ...

Bài báo tạp chí quốc tế TIIJ

AN NEW INTEGRATED APPROACH FOR AN INTRODUCTION TO THE MECHATRONICS ENGINEERING ...

Bài báo đăng Tạp chí ngành cơ khí Việt Nam

The paper presents the researched results on design and manufacture of ...

Sửa lỗi USB hoặc thẻ nhớ SD không thể format ở Windows 10

Nếu bạn đang gặp phải vấn đề với việc format USB hay thẻ nhớ SD thì bài viết ...